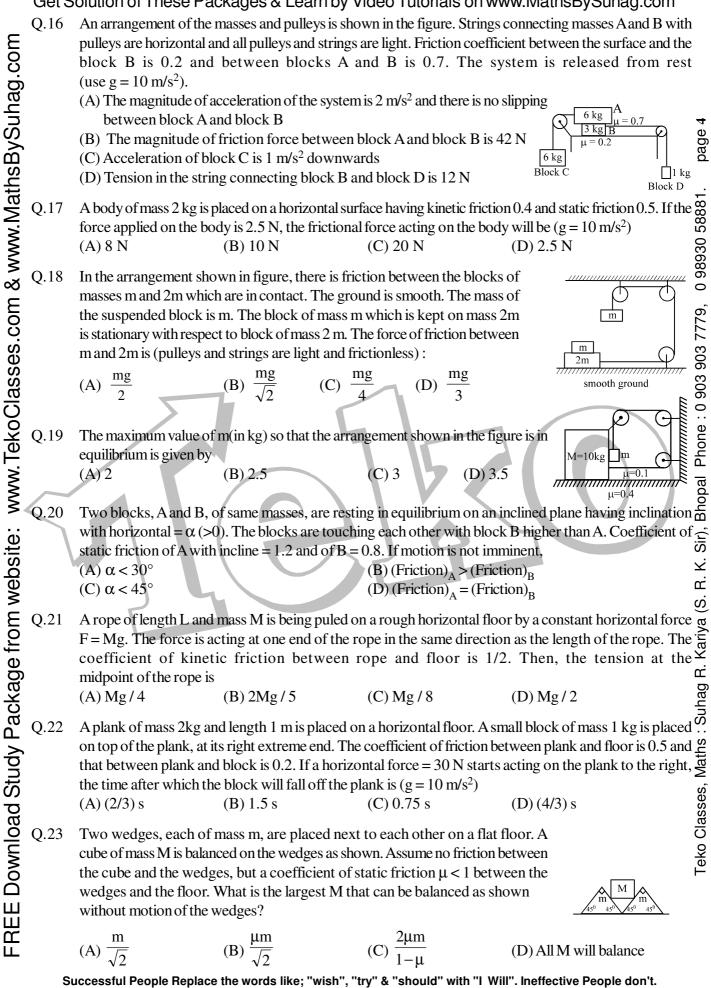
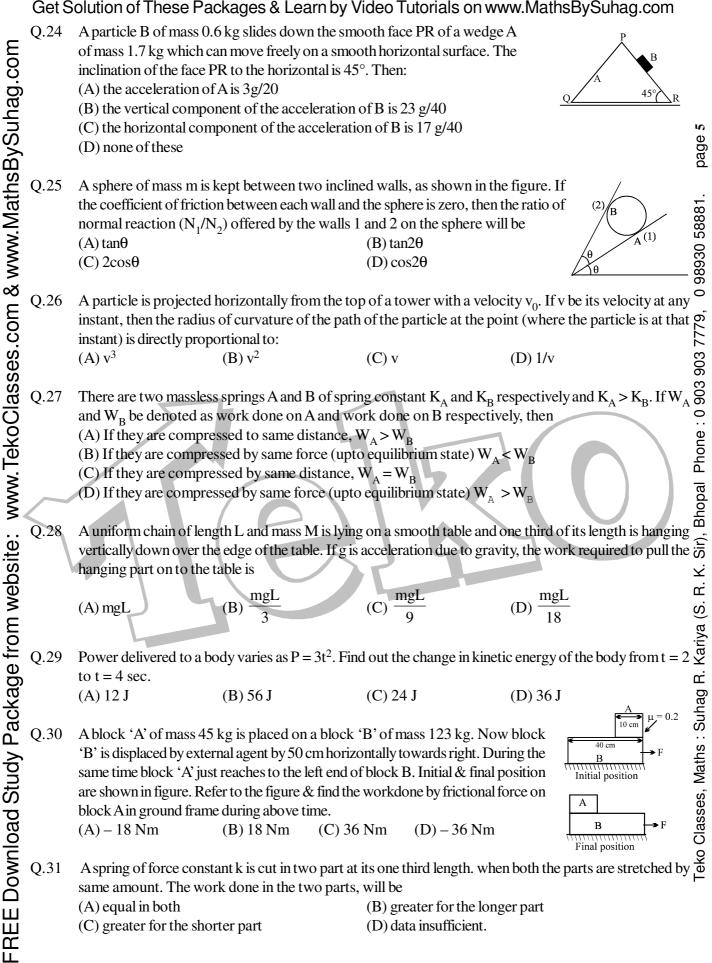


					,		
шo	Q.1	A particle moves in sp	ace along the path $z = ax$	$x^3 + by^2$ in such a way that	$\frac{\mathrm{dx}}{\mathrm{dt}} = \mathrm{c} = \frac{\mathrm{dy}}{\mathrm{dt}}$. Where a, b and		
S		c are constants. The ad	cceleration of the particl	e is			
Ihaç		$(A) \left(6ac^2x + 2bc^2 \right) \hat{k}$	$(B) (2ax^2 + 6by^2) \hat{k}$	(C) $(4bc^2x + 6ac^2)\hat{k}$ (-		
www.TekoClasses.com & www.MathsBySuhag.com	Q.2	strikes a stationary sr maximum height. Assu wall where ball will str (A) $H/2$	nooth wall & falls on the the collision to be ela ike is:	t attains maximum height ' he ground vertically below stic the height of the point o (B) H/4 (D) none of these	v the v the		
n & v	Q.3	A particle is projected top of the wall and fall (A) 3/4 m	at an angle of 45° from a s on the ground 4 m from (B) 2/3 m	n it. The height of the wall i	S 0		
ğ		(11) 5/4 III	(\mathbf{D}) 2/3 III	(C) +15	D) 1/3 m 6		
asses.c	Q.4	Two particles instantaneously at A& B respectively 4.5 meters apart are moving with uniform velocities as shown in the figure. The former towards B at 1.5 m/sec and the latter perpendicular to AB at 1.125 m/sec. The instant when they are nearest is:					
ekoCl		(A) 2 sec	(B) 3 sec	(C) 4 sec (D) $1\frac{23}{25}$	sec $A \xrightarrow{A'} B \xrightarrow{B} O$ $4.5 \text{ m} \xrightarrow{B} O$ $1 \text{ km/hr } B \xrightarrow{C} A$		
, T	Q.5	A river is flowing with	a speed of 1 km/hr. A sw	immer wants to go to point			
Š				of 5 km/hr, at an angle θ	Þ		
	\leq	w.r.t. the river. If AE (A) 37°	B = BC = 400 m. Then (B) 30° (C) 53		Sir), Bhopal		
website:	Q.6	A boat is moving towards east with velocity 4 m/s with respect to still water and river is flowing towards \mathbf{x}					
		flag blown over by the (A) north-west	wind hoisted on the boa (B) south-east	at is: (C) $\tan^{-1}(1/2)$ with east	(D) north (D) north		
ckage fr	Q.7	A girl is riding on a flat shown in the fig. She w such a manner that the	car travelling with a con vishes to throw a ball thro ball will move horizont	stant velocity 10 ms ⁻¹ as ough a stationary hoop in ally as it passes through	Q 5m ↓ Bag B. Ka		
FREE Download Study Package from		the hoop. She throws respect to car. The hor has to be thrown is (A) 1m (B) 2n	s the ball with an initial izontal distance in front on (C) 4m	speed $\sqrt{136}$ ms ⁻¹ with of the hoop at which ball (D) 16m	(D) north (D) north 5m 5m 5m $10ms^{-1}$ 30° with the vertical. At the work particle		
	30° with the vertical. At the vith speed v. The two particle aneously, then the ratio V/v						
FREE D		(A) $3\sqrt{2}$	(B) $2\sqrt{3}$	(C) $\frac{2}{\sqrt{3}}$ (D) $\frac{\sqrt{3}}{2}$ 0 A		

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

- Q.9 A particle is projected with a certain velocity at an angle θ above the horizontal from the foot of a given plane inclined at an angle of 45° to the horizontal. If the particle strike the plane normally then θ equals (B) $\tan^{-1}(1/2)$ (C) $\tan^{-1}(1/\sqrt{2})$ (A) $\tan^{-1}(1/3)$ (D) $\tan^{-1} 3$
- $\frac{(s/m)}{(m/s)}$ Q.10 Velocity time graph of a particle is in shape of a semicircle of radius R as shown in figure. Its average acceleration from T = 0 to T = R is: (B) 1 m/s^2 (A) 0 m/s^2 (C) $R m/s^2$ (D) $2R \text{ m/sec}^2$
- FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com A car is moving with uniform acceleration along a straight line between two stops X and Y. Its speed at X and Y are 2m/s and 14m/s. Then
 (A) Its speed at mid point of XY is 15m/s
 (B) Its speed at a point A such that XA : AY = 1 : 3 is 5m/s
 (C) The time to go form X to the mixed point of XY is double of that to go from mid point to Y. Q.11

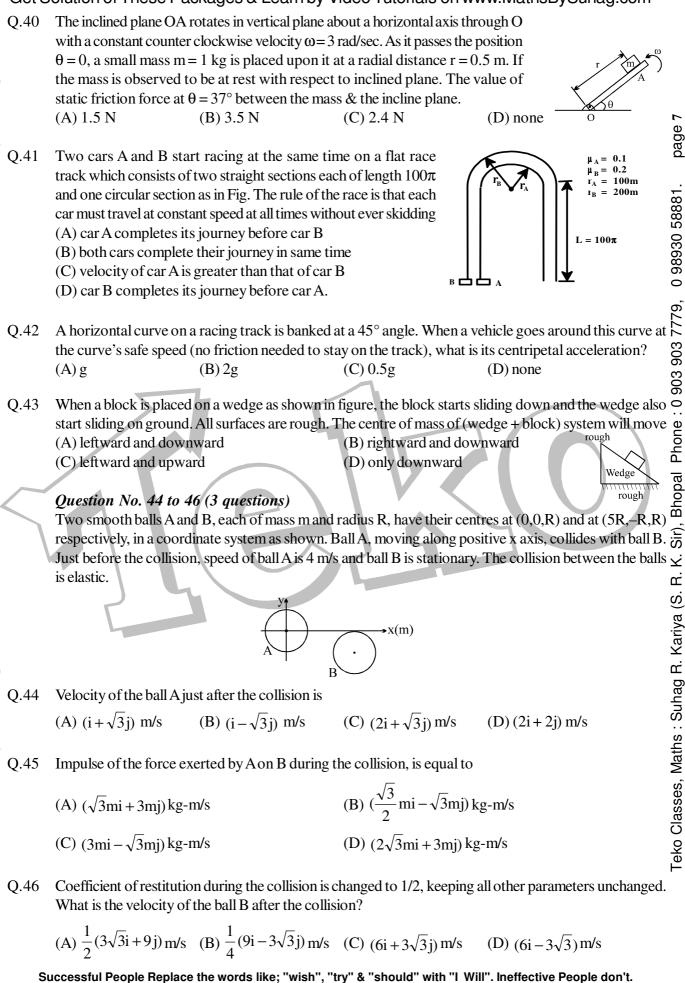

 - 0 (D) The distance travel in first half of the total time is half of the distance travelled in the second half of


page

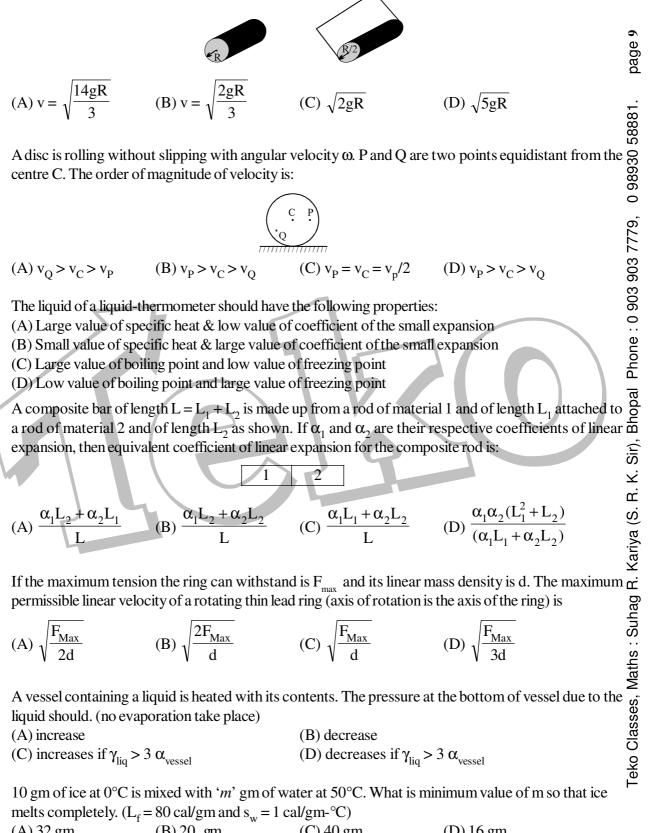
Ľ.

(D) data's are insufficient

- (D) The distance travel in first half of the total time is half of the distance travelled in the second half of the time. A particle having a velocity $v = v_0$ at t = 0 is decelerated at the rate $|a| = \alpha \sqrt{v}$, where α is a positive constant. (A) The particle comes to rest at $t = \frac{2\sqrt{v_0}}{\alpha}$. (B) The particle will come to rest at infinity. (C) The distance travelled by the particle is $\frac{2v_0^{3/2}}{\alpha}$. (D) The distance travelled by the particle is $\frac{2}{3} \frac{v_0^{3/2}}{\alpha}$. Q.12
- Two towns A and B are connected by a regular bus service with a bus leaving in either direction every T m Q.13 minutes. A man cycling with speed of 20km/h in the direction A to B, notices that a bus goes past him o every $t_1 = 18$ minutes in the direction of motion, and every $t_2 = 6$ minutes in the opposite direction. What is the period T of the bus service? Assume that velocity of cyclist is less than velocity of bus (A) 4.5 minutes (B) 24 minutes (C) 9 minutes (D) 12 minutes
- An airplane pilot wants to fly from city A to city B which is 1000 km due north of city A. The speed of the plane in still air is 500 km/hr. The pilot neglects the effect of the wind and directs his plane due north and 2 hours later find himself 300km due north-east of city B. The wind velocity is (A) 150km/hr at 45°N of E (B) 106km/hr at 45°N of E (C) 150 km/he at 45°N of W (D) 106 km/hr at 45 Q.14
- Q.15
 - (B) $\mu = \frac{h}{\sqrt{S^2 h^2}}$ (C) $\mu = \frac{S}{h}$ (A) $\mu = \frac{h}{S}$


Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Q.38


Q.39 (B) $\cos^{-1}(5/\sqrt{3})$ θ (A) $\cos^{-1}(2/3)$ (D) $\cos^{-1}(5/2\sqrt{3})$ $(C) \cos^{-1}(5/6)$

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Get S	Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com					
Q.47 Con Dag.con	A particle of mass $m = 0$. mass $M = 2.4$ kg free to slides down the smooth f is 0.2 m/s the velocity of (A) 4.8	slide on a frictionless face AB of the wedge.	horizontal plane. The When the velocity of the	particle A		
AathsBySut	suspended by a string of of 0.1 m. What is the spe	length 5 m. The centre	of gravity of the block is	block of mass of 2 kg which found to rise a vertical distant (D) 7.8 m/s	h is bade s nce 28881. 28881.	
Q.49	before it hit the floor. Th	-	_	is 80 percent of what it was j (D) 0.50 h	just 02686 0	
E Q.50				particle of mass m at rest. If tic energy is lost in the collision		
sses	(A) $\frac{1}{4}$	$(B) \frac{1}{3}$	(C) $\frac{1}{2}$	(D) none	903 903	
ebsite: www.TekoClasses.com & www.MathsBySuhag.com 670 750 750 750 750 750 750 750 750 750 7	with initial velocity of 50 from wall will it strike the	m/s. After its collision e ground again if coeffi (B) 120 m (2 Questions) ar apart) are approachin hown in figure. The coefficient	with wall & then once w cient of restitution for b (C) 140 m ng towards each	t an angle of 37° with horizon ith ground find at what distant oth collisions is equal to 1/2. (D) none $\frac{20 \text{ m/s}}{\mu = 0.2} 1 \text{ kg}$	Sir), Bhopal Phone : 0	
	Linear momentum of the (A) conserved all the tim (C) is conserved upto 5	e system is Je	(B) never conserved (D) none of these		ya (S. R. K.	
Q.53 Q.53	How much distance will (A) 25 m	centre of mass travel b (B) 37.5 m	efore coming permanen (C) 42.5 m	tly to rest (D) 50 m	J R. Kari	
Q.54 Q.54	From a thin circular disc distance of the centre of (A) 15R/40 (C) R/4	,			us ses, Maths : Suhag R. Kariya (S	
FREE Download Study Package from w ⁶⁷²⁰ ⁶	The density of a rod grad move about a vertical axis perpendicular to the rod. (A) angular acceleration (B) angular velocity whe (C) angular momentum v (D) torque of the applied	is through the pivot. All The quantities, that do on the rod completes or when the rod complete	horizontal force F is app not depend on which er n rotation	provided at an end so that it d lied on the free end in a direct ad of the rod is pivoted, are	can can Teko Classes,	

A carpet of mass 'M' made of inextensible material is rolled along its length in the form of a cylinder of O.56 radius 'R' and is kept on a rough floor. The carpet starts unrolling without sliding on the floor when a negligibly small push is given to it. The horizontal velocity of the axis of the cylindrical part of the carpet when its radius reduces to R/2 will be:

Q.57

(A)
$$v_Q > v_C > v_P$$
 (B) $v_P > v_C > v_Q$ (C) $v_P = v_C = v_p/2$ (D) $v_P > v_C > v_Q$

Q.58

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Q.59

(A)
$$\frac{\alpha_1 L_2 + \alpha_2 L_1}{L}$$
 (B) $\frac{\alpha_1 L_2 + \alpha_2 L_2}{L}$ (C) $\frac{\alpha_1 L_1 + \alpha_2 L_2}{L}$ (D) $\frac{\alpha_1 \alpha_2 (L_1^2 + L_2)}{(\alpha_1 L_1 + \alpha_2 L_2)}$

Q.60

A)
$$\sqrt{\frac{F_{Max}}{2d}}$$
 (B) $\sqrt{\frac{2F_{Max}}{d}}$ (C) $\sqrt{\frac{F_{Max}}{d}}$ (D) $\sqrt{\frac{F_{Max}}{3d}}$

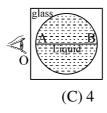
- Q.61
- Q.62 10 gm of ice at 0°C is mixed with 'm' gm of water at 50°C. What is minimum value of m so that ice melts completely. ($L_f = 80 \text{ cal/gm and } s_w = 1 \text{ cal/gm-}^{\circ}C$) (A) 32 gm (B) 20 gm (C) 40 gm (D) 16 gm

- A closed vessel contains a mixture of two diatomic gases A and B. Molar mass of A is 16 times and that 0.63 of B and mass of gas A, contained in the vessel is 2 times that of B.
 - (A) Average kinetic energy per molecule of gas A is equal to that of gas B
 - (B) Root mean square value of translational velocity of gas B is four times that of A
 - (C) Pressure exerted by gas B is eight times of that exerted by gas A
 - (D) Number of molecules of gas B in the cylinder is eight times that of gas A
- A partition divides a container having insulated walls into two compartments I and II. The same gas fills Q.64 A partition divides a container many $\frac{1}{1}$ the two compartments whose initial parameters are given. The partition is a conducting wall which can move freely without friction. Which of the following statements is/are correct, with reference to the final $\frac{1}{1000}$ equilibrium position? (A) The pressure in the two compartments are equal (B) Volume of compartment I is $\frac{3V}{5}$ (C) Volume of compartment II is $\frac{12V}{5}$

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Q.66

(A) 2


- One mole of an ideal gas is kept enclosed under a light piston (area = 10^{-2} m²) connected by a compressed Q.65 spring (spring constant 100 N/m). The volume of gas is 0.83 m³ and its temperature is 100 K. The gas $\overset{\frown}{\text{spring}}$ is heated so that it compresses the spring further by 0.1 m. The work done by the gas in the process is $\overset{\frown}{\text{spring}}$ (Take R = 8.3 J/mole and suppose there is no atmosphere):

nnn (C) 9 J (A) 3 J (B) 6 J Number of collisions of molecules of a gas on the wall of a container per m^2 will:

- (A) Increase if temperature and volume both are doubled
- (B) Increase if temperature and volume both are halved
- (C) Increase if pressure and temperature both are doubled
- (D) Increase if pressure and temperature both are halved

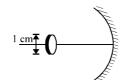
(B) 1/2

- The image produced by a concave mirror is one quarter the size of object. If the object is moved 5 cm Q.67 closer to the mirror, the image will only be half the size of the object. The focal length of mirror is (A) f = 5.0 cm(B) f = 2.5 cm(C) f = 7.5 cm(D) f = 10 cm
- Q.68 The observer 'O' sees the distance AB as infinitely large. If refractive index of liquid is μ_1 and that of glass is μ_2 , then μ_1/μ_2 is:

Q.69 For a prism kept in air it is found that for an angle of incidence 60°, the angle of refraction 'A', angle of deviation ' δ ' and angle of emergence 'e' become equal. Then the refractive index of the prism is (A) 1.73 (B) 1.15 (C) 1.5 (D) 1.33

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

(D) 1.5 J


(D) None of these

10

	Get S	olution
sBySuhag.com		Question A concar placed of from the
ww.Math	Q.70	The ima (A) circu (C) ellip
m & v	Q.71	In the a (A) 1.2
asses.co	Q.72	What w (A) 0.2 (C) 0.4
www.TekoCla	Q.73	A lumin shown is stateme (A) If a and OI.
m website:		(B) If a l inter (C) If a r equa (D) I is a
Study Package froi	Q.74	An object On the of $2(f_1 + f_2)$ leftward (A) The (B) The (C) The (D) The
FREE Download	Q.75	A parall length f distance (A) f (µ

of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com on No. 70 to 72 (3 questions)

ave mirror of radius of curvature 20 cm is shown in the figure. A circular disc of diameter 1 cm is on the principle axis of mirror with its plane perpendicular to the principal axis at a distance 15 cm e pole of the mirror. The radius of disc increasing according to the law r = (0.5 + 0.1t) cm/sec.

		Think .		ğ
Q.70	The image formed by the mirror will be in the s (A) circular disc (C) elliptical disc with major axis vertical	shape of a: (B) elliptical disc with major axis horizontal (D) distorted disc		98930 58881.
Q.71	In the above question , the area of image of the (A) $1.2 \pi \mathrm{cm}^2$ (B) $1.44 \pi \mathrm{cm}^2$: (D) none of these	0
Q.72	What will be the rate at which the horizontal rat (A) 0.2 cm/sec increasing (C) 0.4 cm/sec increasing	dius of image will be cha (B) 0.2 cm/sec decreas (D) 0.4 cm/sec decreas	sing	903 903 7779,
Q.73	 A luminous point object is placed at O, whose image is formed at I as shown in figure. Line AB is the optical axis. Which of the following statement is/are correct? (A) If a lens is used to obtain the image, then it must be a diverging lens and its optical centre will be the intersection point of line AB and OI. (B) If a lens is used to obtain the image, then it must be a converging lens and its optical centre will be 			
	 (D) If a forst is used to obtain the image, then if intersection point of line AB and OI. (C) If a mirror is used to obtain the image then the equal angles at the pole of the mirror. (D) Lis a real image. 			Sir)

- ect is placed infront of a converging lens at a distance equal to twice the focal length f_1 of the lens. other side of the lens is a concave mirror of focal length f_2 separated from the lens by a distance f_2). Light from the object passes rightward through the lens, reflects from the mirror passes f_2 . Light form the lens and forms a final image of the object extreme the lens or distance between the lens or distance f_2 . other side of the lens is a concave mirror of focal length f_2 separated from the lens by a distance f_2 . Light from the object passes rightward through the lens, reflects from the mirror, passes f_2 . It is the refractive index of the object f_1 . It is the refractive index of the lens f_2 separated from the lens by a distance f_2 . It is the refractive index of the lens f_2 separated from the lens by a distance f_2 . It is the refractive index of the lens f_2 separated from the lens by a distance f_2 . It is the refractive index of the lens f_2 separated from the lens by a distance f_2 . It is the refractive index of the lens f_2 separated from the lens by a distance f_2 . It is the refractive index of the lens f_2 separated from the lens by a distance f_2 . It is the refractive index of the lens f_2 separated from the lens by a distance f_2 . It is the refractive index of the lens f_2 separated from the lens f_2 separated from the lens f_3 is the refractive index of the lens f_2 separated from the lens f_3 is the refractive index of the lens f_4 is the
- Teko (e of the image from the lens if μ is the refractive index of the lens.

(B) $(\mu-1)/f(3\mu-1)$ (C) $(3\mu-1)/f(\mu-1)$ (D) $f(\mu-1)$ $(-1)/3\mu - 1$